Traffic Noise Abatement by Diamond Grinding in Ohio

Lloyd Herman Jared Withers

Presented By:

Lloyd A. Herman Ph.D. P.E.

Ohio University

122 Stocker Center

Athens, Ohio 45701

Tel: (740) 593-1472

E-mail: herman@bobcat.ent.ohiou.edu

Objective:

to identify traffic noise level and frequency differences due to the retexturing of the concrete pavement surface by grinding.

Surface texture before diamond grinding

Surface texture after diamond grinding

Project area map showing site locations

RTA and DAT Recorders

7.5 and 15 meter microphones

Environmental monitoring equipment

Ŋ.

Equivalent continuous sound level measured before and after diamond grinding

Site 1 Mic 1 (7.5m)

The difference in equivalent continuous sound level

Site 1 Mic 1 (7.5m) Difference

Equivalent continuous sound level measured before and after diamond grinding

Site 5 Mic 1 (7.5m)

The difference in equivalent continuous sound level

Site 5 Mic 1 (7.5m) Difference

Average equivalent continuous sound level measured before and after diamond grinding

Average Mic 1 (7.5m)

Average equivalent continuous sound level difference

Mic 1 (7.5m) Average Difference

Average equivalent continuous sound level measured before and after diamond grinding

Average Mic 2 (15m)

Average equivalent continuous sound level difference

Mic 2 (15m) Average Difference

TNM Simulation Results

	Γ		
	Sound Level (dB)		
	7.5m	15m	
Site 1			
Before	78.2	74.1	
After	78.8	74.7	
Difference	0.6	0.6	
Site 2			
Before	78.3	74.6	
After	77.7	73.8	
Difference	-0.6	-0.8	
Site 3			
Before	78.1	74.1	
After	78.2	74.1	
Difference	0.1	0.0	
Site 4			
Before	78.3	74.5	
After	77.6	73.7	
Difference	-0.7	-0.8	
Site 5			
Before	78.5	74.1	
After	78.1	74.5	
Difference	-0.4	0.4	

TNM corrected differences in before and after broadband traffic noise levels

TNM Corrected Differences

□ 7.5m Mic **☑** 15m Mic

Conclusions

■ The average reduction in broadband noise at 7.5 m was 3.5 dB (3.2 dB to 4.2 dB range), and the average reduction at 15m was 3.1 dB (2 dB to 4.9 dB).

Conclusions continued...

Spectrum analysis showed the greatest reduction in noise occurred at frequencies above 1 kHz and that the retexturing had little to no effect on frequencies less than 200 Hz

Questions???

Average environmental conditions

	Average Ambient Temp (°C)	Average Pavement Temp (°C)	Average Relative Humidity (%)	Average Wind Speed (km/h)	Average Wind Direction
Site 1					
Before	27	28	61	7	ENE
After	8	4	70	2	SSE
Site 2					
Before	27	28	82	8	WNW
After	8	7	71	2	S
Site 3					
Before	22	24	63	2	S
After	9	2	56	4	S
Site 4					
Before	24	30	55	8	WSW
After	3	4	76	2	W
Site 5					
Before	21	24	62	3	NNE
After	7	3	76	5	ESE

Measurement system calibration

Measurement system calibration

Distant Receivers

The differences in broadband levels between before and after diamond grinding

Difference Between Before and After Broadband Levels

Equivalent continuous sound level measured before and after diamond grinding

Site 3 Mic 4 (60m)

ÞΑ

The difference in noise levels, before diamond grinding, between the 7.5 m microphone position and each of the more distant microphone

Propagation Attenuation, Site 4, Before

The difference in noise levels, after diamond grinding, between the 7.5 m microphone position and each of the more distant microphone positions

Propagation Attenuation, Site 4, After

The difference in noise levels between the 7.5 m and 120m microphone position before and after diamond grinding

Propagation Attenuation, Site 4, Mic 5 (120m)

ÞΑ

Equivalent continuous sound level compensated for calculated propagation attenuation differences

Site 4 Mic 5 (120m) - Distance Attenuation Corrected

